Empty Hunyuan Latent Video
Empty Hunyuan Latent Video Node Overview
The EmptyHunyuanLatentVideo
node is similar to the EmptyLatent Image node.
You can think of it as providing a blank canvas for video generation, where the width, height and length define the canvas properties, and batch size determines how many canvases to create. This node creates fresh empty canvases ready for subsequent video generation tasks.
Class Information
- Class Name:
EmptyHunyuanLatentVideo
- Category:
latent/video
- Output Node:
True
Empty Hunyuan Latent Video Input Types
Parameter | Comfy Type | Description |
---|---|---|
width | INT | Video width, default 848, minimum 16, maximum nodes.MAX_RESOLUTION , step size 16. |
height | INT | Video height, default 480, minimum 16, maximum nodes.MAX_RESOLUTION , step size 16. |
length | INT | Video length, default 25, minimum 1, maximum nodes.MAX_RESOLUTION , step size 4. |
batch_size | INT | Batch size, default 1, minimum 1, maximum 4096. |
Empty Hunyuan Latent Video Output Types
Parameter | Comfy Type | Description |
---|---|---|
samples | LATENT | Generated latent video samples containing zero tensors, ready for processing and generation tasks. |
Empty Hunyuan Latent Video Workflow Example
Tencent Hunyuan Video Model Workflow
Related Resources
Here are some relevant resources curated by ComfyUI Wiki:
Empty Hunyuan Latent Video Node Source Code
- ComfyUI Version: v0.3.10
- 2025-01-07
class EmptyHunyuanLatentVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 25, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/video"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return ({"samples":latent}, )